

Ramsar Information Sheet

Published on 20 October 2017

ItalyBusatello marsh

Designation date 3 October 2017 Site number 2315

Coordinates 45°06'37"N 11°05'15"E

Area 443,00 ha

https://rsis.ramsar.org/ris/2315 Created by RSIS V.1.6 on - 18 May 2020

Color codes

Fields back-shaded in light blue relate to data and information required only for RIS updates.

Note that some fields concerning aspects of Part 3, the Ecological Character Description of the RIS (tinted in purple), are not expected to be completed as part of a standard RIS, but are included for completeness so as to provide the requested consistency between the RIS and the format of a 'full' Ecological Character Description, as adopted in Resolution X.15 (2008). If a Contracting Party does have information available that is relevant to these fields (for example from a national format Ecological Character Description) it may, if it wishes to, include information in these additional fields.

1 - Summary

Summary

The Busatello Marsh is the only remaining freshwater marsh to survive after the drainage of a vast system of wetlands which up to a century ago formed the Tartaro and Ostiglia marshes, that along with the 'Grandi Valli Veronesi' extended to about 30,000 ha.

Due to subsidence of the surrounding land resulting from the drainage, the marsh is higher than the surrounding land. Therefore all along its boundary it is dyked and water inflow is assured by water pumps.

Some species of rare plants or plants at risk of extinction in the local area are present at the site.

Moreover the marsh represents a stop-over during migration for many species of birds and an important breeding ground for other birds. Finally, the site gives refuge to other species of animals which are on various red lists.

The whole marsh area extends over 80 hectares; it is however managed by two different administrations, the Busatello Marsh ("Palude del Busatello", province of Verona –VR-, Veneto Region) and the Ostiglia Marshes ('Paludi di Ostiglia', province of Mantova –MN-, Lombardy Region).

It is important to note that in 1984 the Ostiglia Marshes were placed under the Ramsar Convention, while the Busatello Marsh was declared a Ramsar Site by Italian Environment Ministry starting from September 30, 2008.

2 - Data & location

2.1 - Formal data

2.1.1 - Name and address of the compiler of this RIS

Compiler 1

Name	Ernesto Cavallini
Institution/agency	WWF OF VERONA ASSOCIATION
E-mail	ern.cavallini@virgilio.it
Phone	+39 333 678 5798

2.1.2 - Period of collection of data and information used to compile the RIS

From year 2000

To year 2015

2.1.3 - Name of the Ramsar Site

Official name (in English, French or Spanish)

Busatello marsh

Unofficial name (optional)

Palude del Busatello

2.2 - Site location

2.2.1 - Defining the Site boundaries

b) Digital map/image

<1 file(s) uploaded>

Former maps 0

Boundaries description

The whole "Busatello marsh" Ramsar Site is placed within the Gazzo Veronese municipality (VR).

The Site borders on east by the other Ramsar Site, the Ostiglia swampland (Ostiglia municipality, MN) and the remaining borders with farming land and channels. The northern border, which is 950m long, follow the Tione River's dam, while southern border consists of the Fissero-Tartaro-Canalbianco 450m long dam.

The Site's limits are the same as Natura 2000 site IT3210013 "Palude del Busatello".

Only a part of the Site is closely a marshland. The farmland's inclusion in the Ramsar Site is justified in the complex hydrogeological context of the large area. Indeed, once Po - Veneto Valley, including the Adige and Po River final stretch, constituted a massively extensive wetlands system, called as "Grandi Valli Veronesi", where hygrophilous woods were also well represented.

This broader land has been reclaimed for decades: actually Busatello's wetland (implemented jointly with Ostiglia' swampland) is keeping its original places appearance and it may be defined as "last valley" fully preserved from the great remediation.

The effective wetland (80ha), artificially improved, depends on drainage water from the agricultural soil.

Moreover, Busatello's wetland constitutes specific characteristics of hanging gardens established within a few meters above neighbouring ground level: ploughed by a complex net of channels and drainages whose contribute to artificially supplying water in the swamp.

The adjoining farming areas are therefore part of a unique system, which defines a fragile freshwaters equilibrium and themselves are generally wet.

2.2.2 - General location

a) In which large administrative region does the site lie?	Veneto
b) What is the nearest town or population centre?	Gazzo Veronese

2.2.3 - For wetlands on national boundaries only

a) Does the wetland extend onto the territory of one or more other	Yes O	No @
countries?	.00 -	. 10 -

b) Is the site adjacent to another designated Ramsar Site on the territory of another Contracting Party?

2.2.4 - Area of the Site

Official area, in hectares (ha): 443

Area, in hectares (ha) as calculated from GIS boundaries 443

2.2.5 - Biogeography

Biogeographic regions

Regionalisation scheme(s)	Biogeographic region
EU biogeographic regionalization	Continental

3 - Why is the Site important?

3.1 - Ramsar Criteria and their justification

☑ Criterion 1: Representative, rare or unique natural or near-natural wetland types

The main hydrological value is the potential to partly purify the rich in nutrients waters flowing from the surrounding cultivated areas.

Other ecosystem services provided

It is an important stop-over area for migration and breeding ground for birds.

It is the largest freshwater marsh still present in Province of Verona. It is the last remaining area of the extensive system of marshes located between the rivers Adige, Tartaro and Po (known as the Great Veronese Valleys) to survive the reclamation works carried out in the 19th and 20th centuries. In the Po Valley (Pianura Padana) this type of environment is actually rare.

- ☑ Criterion 2 : Rare species and threatened ecological communities
- ☑ Criterion 3 : Biological diversity

Justificatio

It hosts many species of plants and animals typical of wetland ecosystems. Many of these species are threatened or in decline in the Po Valley. Moreover, it hosts more than 170 birds species, 226 plants, 7 amphibious, 6 reptiles and numerous invertebrates most of these strictly connected to marshy ecosystems.

☑ Criterion 4 : Support during critical life cycle stage or in adverse conditions

3.2 - Plant species whose presence relates to the international importance of the site

Scientific name	Common name	Criterion 2	Criterion 3	Criterion 4	IUCN Red List	CITES Appendix I	Other status	Justification
Hottonia palustris		Ø	Ø		LC ●\$ ●關		EN - Red List of Italian Flora	The species has become very rare in the Province of Verona. Strictly connected to wetlands became extremely rare in intensive cultivated plains such as Pianura Padana
Sagittaria latifolia		Ø	Ø		LC ●数 ●瞬		EN - Red List of Italian Flora	The species has become very rare in the Province of Verona. Strictly connected to wetlands became extremely rare in intensive cultivated plains such as Pianura Padana
Salvinia natans		Ø	Ø		LC ●数 ●關		VU - Red List of Italian Flora	The species has become very rare in the Province of Verona. Strictly connected to wetlands became extremely rare in intensive cultivated plains such as Pianura Padana

3.3 - Animal species whose presence relates to the international importance of the site

Phylum	Scientific name	Common name	Species qualifies under criterion 2 4 6 9	Species contributes under criterion 3 5 7 8	Pop. Size Period of pop. Est.	% occurrence		CITES Appendix I	CMS Appendix I	Other Status Justification
CHORDATA/ AVES	Acrocephalus schoenobaenus	Sedge Warbler					LC			CR - Red List of Italian Vertebrates The site is important for migration
CHORDATA/ AVES	Alcedo atthis	Common Kingfisher	2 000				LC Sir			Annex I Birds Directive
CHORDATA/ AVES	Anas crecca		2200				LC			EN - Red List of Italian Vertebrates Wintering and breeding site
CHORDATA/ AVES	Anas querquedula		8800							VU - Red List of Italian Vertebrates The site is important for migration
CHORDATA/ AVES	Anas strepera	Gadwall								VU - Red List of Italian Vertebrates The site is important for migration
CHORDATA/ AVES	Ardea purpurea	Purple Heron					LC Str			Annex I Birds Directive
CHORDATA/ AVES	Botaurus stellaris	Tarabuso					LC ©#			EN - Red List of Italian Vertebrates. EC Birds Directive Annex I. Wintering site
CHORDATA/ AVES	Circus aeruginosus	Western Marsh Harrier					LC ©SP			VJ - Red List of Italian Vertebrates. EC Birds Directive Annex I. Breeding site
CHORDATA/ AVES	Circus pygargus	Montagu's Harrier					LC St Other			VU - Red List of Italian Vertebrates. EC Birds Directive Annex I. The site is important for migration
CHORDATA/ AVES	Falco vespertinus	Red-footed Falcon					NT OTSF		V	VU - Red List of Italian Vertebrates. EC Birds Directive Annex I. The site is important during migration
CHORDATA/ AVES	Himantopus himantopus			10000			LC ●数 ●爾			Annex I Birds Directive
CHORDATA/ AVES	Ixobrychus minutus	Little Bittern					LC Str			VU - Red List of Italian Vertebrates. EC Birds Directive Annex I. Breeding site
CHORDATA/ AVES	Jynx torquilla	Torcicollo	2200				LC ©#			EN - Red List of Italian Vertebrates The site is important for migration
CHORDATA/ AVES	Lanius collurio	Red-backed Shrike					LC			VU - Red List of Italian Vertebrates. EC Birds Directive Annex I. Breeding site
CHORDATA/ AVES	Lanius minor						LC Si Si			Annex I Birds Directive
CHORDATA/ AVES	Locustella luscinioides	Savi's Warbler					LC •#			EN - Red List of Italian Vertebrates Breeding site
CHORDATA/ AVES	Milvus milvus						NT Str			Annex I Birds Directive
CHORDATA/ AVES	Motacilla flava	Western Yellow Wagtail					LC ©SF			VU - Red List of Italian Vertebrates Breeding site
CHORDATA/ AVES	Nycticorax nycticorax	Black-crowned Night Heron; Black-crowned Night-Heron					LC •#			VU - Red List of Italian Vertebrates. EC Birds Directive Annex I.
CHORDATA/ AVES	Panurus biarmicus	Bearded Reedling					LC OB			EN - Red List of Italian Vertebrates Breeding site
CHORDATA/ AVES	Passer italiae		2 000				LC Str			VU - Red List of Italian Vertebrates Italian endemism
CHORDATA/ AVES	Passer montanus	Eurasian Tree Sparrow					LC ©SP			VU - Red List of Italian Vertebrates Breeding site

Phylum	Scientific name	Common name	Species qualifies under criterion 2 4 6 9	Species contributes under criterion	Pop. Size	% occurrence		CITES Appendix I	CMS Appendix I	Other Status	Justification
CHORDATA/ AVES	Porzana parva			10000			LC OTH			Annex I Birds Directive	
CHORDATA/ AVES	Porzana porzana			10000			LC			Annex I Birds Directive	
CHORDATA/ AVES	Remiz pendulinus	Eurasian Penduline Tit	200C				LC			VU - Red List of Italian Vertebrates	Breeding site
CHORDATA/ AVES	Saxicola torquatus						LC STRF			VU - Red List of Italian Vertebrates	
CHORDATA/ AVES	Tyto alba alba			10000						Annex I Birds Directive	
Fish, Mollusc	and Crustacea										
CHORDATA/ ACTINOPTERYGI	Anguilla anguilla	Anguilla					CR ●辭			CR - Red List of Italian Vertebrates	The species has become rare in the Province of Verona
Others											
CHORDATA/ AMPHIBIA	Bufo bufo	European Toad					LC Sign			VU - Red List of Italian Vertebrates	The species is threatened in the Po Valley
CHORDATA/ REPTILIA	Emys orbicularis	Testuggine palustre	2 000				LC ●数 ●開			EN - Red List of Italian Vertebrates. EC Habitats Directive Annex II	The species has become rare in the Po Valley
CHORDATA/ AMPHIBIA	Hyla intermedia	Raganella italiana									Italian endemism. Reproduction site.
ARTHROPODA/ INSECTA	Lycaena dispar									Annex II Habitat Directive 92/43	
CHORDATA/ AMPHIBIA	Rana latastei	Rana di Lataste					VU Sign			VU - Red List of Italian Vertebrates	Northern Italy's endemic species. Reproduction site.
CHORDATA/ MAMMALIA	Rhinolophus euryale	Mediterranean Horseshoe Bat	8000				NT © SSP			VU - Red List of Italian Vertebrates. EC Habitats Directive 92/43 Annex II,IV	The Italian population is in serious decline
CHORDATA/ MAMMALIA	Rhinolophus ferrumequinum	greater horseshoo bat					LC Sign			VU - Red List of Italian Vertebrates. EC Habitats Directive Annex II, IV	The Italian population is in serious decline
CHORDATA/ MAMMALIA	Rhinolophus hipposideros	lesser horseshoe bat								EN - Red List of Italian Vertebrates. EC Habitats Directive Annex II, IV	The Italian population is in serious decline
CHORDATA/ AMPHIBIA	Triturus carnifex						LC Sign			Annex II Habitats Directive 92/43	
CHORDATA/ REPTILIA	Zootoca vivipara										Endangered species in Northern Italy, very rare in the Po Valle

¹⁾ Percentage of the total biogeographic population at the site

3.4 - Ecological communities whose presence relates to the international importance of the site

RIS for Site no. 2315, Busatello marsh, Italy

Name of ecological community	Community qualifies under Criterion 2?	Description	Justification
EU 3150: Natural euthrophic lakes with Magnopotamion or Hydrocharition-type vegetation	Ø	Lakes and ponds, more or less turbid, waters, particularly rich in dissolved bases (pH usually>7), with free-floating surface communities of the Hydrocharition or, in deep, open waters, with associations of large pondweeds (Magnopotamion).	EU Habitats Directive Annex I
EU 91E0*: Alluvial forests with Anus glutinosa and Fraxinus excelsior (Ano- Padion, Anion incanae, Salicion albae)	2	Riparian forests of Fraxinus excelsior and Anus glutinosa, of temperate and Boreal Europe Iowland and hill watercourses (Pal. 44.3: Ano-Padion). Occur on heavy soils periodically inundated, but otherwise well-drained and aerated during low-water.	EU Habitats Directive Annex I

4 - What is the Site like? (Ecological character description)

4.1 - Ecological character

The water level in the marsh is 2 meters higher than the level of the surrounding land.

The marsh is supplied with water by means of an electrical pump.

Most of the area is covered by reeds (Scirpo-Phragmitetum), sedges (Carex elata and Carex riparie), and aquatic plants/ferns (Myriophillum-Nupharetum, Salvinio-Spirodeletum polyrhizae).

There also are some areas of willows (Salix alba and Salix cinerea) and small zones of bulrush.

Mixed sedge-reed beds are taking the place of "pure" sedge, probably due to a continual reduction in the summer harvesting of sedge, which favors the growth of the reeds.

Some of the wetland areas are starting to suffer from silting problems, with the increase of species of infesting weeds coming from the nearby countryside such as Urtica dioica, Rubus caesius, Humulus lupulus, Sambucus nigra.

The quality of the rich in nitrates water entering the marsh is responsible for a relevant eutrophication process.

The massive presence of alien fauna species such as the Myocastor coipus, the Procambarus clarkii, the Silurus glanis and the Carassius carassius, directly competes with the native fauna and, in the case of the Myocastor, it also damages the marsh embankment.

Swamp management long ago was very effective due to the production of typical marsh grasses as Phragmites australis and Carex spp.: this contributed to a protection of special features, despite of now that are in risk of extinction.

4.2 - What wetland type(s) are in the site?

Inland wetlands

Wetland types (code and name)	Local name	Ranking of extent (1: greatest - 4: least)	Area (ha) of wetland type	Justification of Criterion 1
Fresh water > Flowing water >> M Permanent rivers/ streams/ creeks	Flume Tione and Flume Tartaro	2	10	Representative
Fresh water > Marshes on inorganic soils >> Tp: Permanent freshwater marshes/ pools	Busatello marsh	1	60	Representative

Human-made wetlands

Wetland types (code and name)	Local name	Ranking of extent (1: greatest - 4: least)	Area (ha) of wetland type	Justification of Criterion 1
9: Canals and drainage channels or ditches	Scolo Germina, Fosso Seriola (Albina), Scolo Osone, Scolo Catena, Fosso Pila	2	5	Representative

Other non-wetland habitat

Other Hori-weitarid Habitat	
Other non-wetland habitats within the site	Area (ha) if known
Corine biotopes code 44.44 Po oak-ash-alder forests (Po Quercus - Fraxinus - Alnus forests, EUNIS habitat type code G1.	4
Farmland and irrigated land	360

4.3 - Biological components

4.3.1 - Plant species

Other noteworthy plant species

Scientific name	Common name	Position in range / endemism / other
Butomus umbellatus		IUCN Red List = LC
Carex appropinquata		IUCN Red List = LC
Cicuta virosa		IUCN Red List = LC Species on the Red List of vascular plants of Regione Veneto
Euphorbia palustris		IUCN Red List = LC Species on the Red List of vascular plants of Regione Veneto
Jacobaea paludosa		IUCN Red List = LC Species on the Red List of vascular plants of Regione Veneto
Leucojum aestivum		IUCN Red List = LC Species on the Red List of vascular plants of Regione Veneto
Nymphaea alba		IUCN Red List = LC Species on the Red List of vascular plants of Regione Veneto
Oenanthe aquatica		IUCN Red List = LC Species on the Red List of vascular plants of Regione Veneto
Pedicularis palustris		IUCN Red List = LC Species on the Red List of vascular plants of Regione Veneto
Sonchus palustris		IUCN Red List = LC
Trapa natans		IUCN Red List = LC Species on the Red List of vascular plants of Regione Veneto
Utricularia vulgaris		IUCN Red List = LC Species on the Red List of vascular plants of Regione Veneto

Invasive alien plant species

Scientific name	Common name	Impacts
Bidens frondosa		Potentially
Elodea canadensis		Potentially
Nelumbo nucifera	Sacred lotus	Potentially
Phyllostachys aureosulcata		Potentially
Phytolacca americana		Potentially
Robinia pseudoacacia	False Acacia;Black Locust	Potentially
Solidago gigantea		Potentially

4.3.2 - Animal species

Phylum	Scientific name	Common name	Impacts
CHORDATA/ACTINOPTERYGII	Carassius auratus		Actually (major impacts)
ARTHROPODA/MALACOSTRACA	Procambarus clarkii		Actually (minor impacts)
CHORDATA/ACTINOPTERYGII	Silurus glanis		Actually (major impacts)
CHORDATA/AMPHIBIA	Lithobates catesbeianus		Potentially
CHORDATA/MAMMALIA	Myocastor coypus		Actually (minor impacts)
CHORDATA/REPTILIA	Trachemys scripta		Potentially

4.4 - Physical components

4.4.1 - Climate

Climatic region	Subregion
C: Moist Md-Latitude dimate with mild winters	Cfa: Humid subtropical (Mld with no dry season, hot summer)

Geomor	

4.4.2 - Geomorphic setting	
a) Mnimum elevation above sea level (in metres)	
a) Maximum elevation above sea level (in metres)	
Entire river basin	
Upper part of river basin ☐	
Middle part of river basin ☑	
Lower part of river basin \square	
More than one river basin \Box	
Not in river basin □	
Coastal	
Please name the river basin or basins. If the site lies in a sub-basin, please	also name the larger river basin. For a coastal/marine site, please name the sea or ocean.
Fissero, Tartaro, Canalbianco	

4.4.3 - Soil

Mineral 🗹 Organic 🗹 No available information \square Are soil types subject to change as a result of changing hydrological Yes O No conditions (e.g., increased salinity or acidification)?

Please provide further information on the soil (optional)

The area is formed by alluvial terraces of relatively old deposits from the Tione, Tartaro and Po Rivers.

The substrate is formed from peat and silt.

According to the American classification of Soil Taxonomy, USDA 1975, the soils come under Histosols being characterized by a high content of organic substances. On the regional map of soils they are defined as very thin, organic, bounded by outcropping water table, with impeded drainage (areas which preserve the hydromorphic conditions with wetland vegetation and peat deposits. These characterized a large part of the territory before the land reclamation).

4.4.4 - Water regime

Water permanence Presence?

Usually permanent water present

Source of water that maintain	s character of the site
Presence?	Predominant water source
Water inputs from surface water	

Water destination

Presence? To downstream catchment

Stability of water regime

Presence? Water levels fluctuating (including tidal)

Please add any comments on the water regime and its determinants (if relevant). Use this box to explain sites with complex hydrology.

Water inflow is assured by means of an electrical water pump which lifts water 3 meters from an input canal which drains water from surrounding farm land.

In the marsh there are some canals which supply water to the different zones. Water levels are regulated by means of bulkheads.

Between December 2015 and March 2016 these canals were cleaned to remove plants and sedimentation that had obstructed them for years. Surplus water drains into the River Tione which flows near the wetland.

(ECD) Connectivity of surface waters and of groundwater	The marsh can receive water from the Canal bianco channel and from Molinella River. Surplus water drains into the River Tione which flows near the wetland.
4.4.5 - Sediment regime	
Significant erosion of sec	diments occurs on the site
Significant accretion or deposition of sec	diments occurs on the site 🗹
Significant transportation of sediments oc	curs on or through the site
Sediment regime is highly variable, either se	easonally or inter-annually
S	Sediment regime unknown
Please provide further information on sedime	
Vegetal biomass is left in place so the	nat the marsh increases in thickness year by year and evolves toward a wet woodland.
(ECD) Water turbidity and colour	The water is quite murky in the input points from the outside and in the resulting distribution channels.
(ECD) Water temperature	5<°C<26 in the years 2010-2015
4.4.6 - Water pH	
The state of the s	Acid (pH<5.5) □
C	ircumneutral (pH: 5.5-7.4)
	Alkaline (pH>7.4) ☑
	Unknown 🗆
Please provide further information on pH (opti	onal):
7.5	·
4.4.7 - Water salinity	
	Fresh (<0.5 g/l) ☑
Myshalina (brack)	ish)/Mxosaline (0.5-30 g/l)
	naline/Eusaline (30-40 g/l)
	aline/Hypersaline (>40 g/l)
пурет	Unknown
(ECD) Discoland was as in water	OTIKTOWN L
(ECD) Dissolved gases in water 2< Oxygen mg/l<14	
	is probably due to reduced hydrodynamics, which causes isolation among stations, and the alternation of esses.
4.4.8 - Dissolved or suspended nutrie	nts in water
•	Eutrophic 🗹
	Mesotrophic □
	Oligotrophic
	Dystrophic
	Unknown
Please provide further information on dissolve	
	the input points of eutrophic waters from the countryside. At these sites water transparency was
considerably reduced and macrophy On the contrary, low phytoplankton a demersum, Myriophyllum spicatum, extremely fluffy all over the channel d	Attes, when present, were covered by a thick layer of epiphytic material. Ind nutrient concentrations, high water transparency and extended macrophyte stands (Ceratophyllum Nymphaea alba and Nuphar luteum) were found in the central portion of the Reserve. Sediments resulted ue to fast accumulation of organic matter; organic matter content was ~20% at all investigated sites and considerable internal load able to sustain nutrients regeneration.
(ECD) Dissolved organic carbon	
(ECD) Redox potential of water and	-50 <mv<+300 (measurement="" 2002)<="" done="" in="" td=""></mv<+300>
sediments (ECD) Water conductivity	450<□S/cm<650 (measurement done in 2002)

4.4.9 - Features of the surrounding area which may affect the Site

Please describe whether, and if so how, the landscape and ecological characteristics in the area surrounding the Ramsar Site differ from the i) broadly similar O ii) significantly different
site itself:

RIS for Site no. 2315, I	Busatello mars	h, Italy		
Surrounding ar	ea has greater urb	anisation o	or development	
Surrounding area has higher human population density				
Surroundi	ing area has more	intensive a	agricultural use 🗹	
Surrounding area has sig	initicantly different l	and cover	or habitat types 🗀	
Please describe other ways	in which the surro	unding are	ea is different:	
Farming is mechanize There is extensive use	ed. e of chemical fe is entirely farm	ertilizers	and herbicides. Irrigation is	ing; the most common crop is com. artificial. arge its surface drainage waters into the wetland, during the heavy raing
4.5 - Ecosystem s	ervices			
1.5.1 - Ecosystem servi	ices/henefits			
•	ices/benents			
Provisioning Services	Evennele		Insurante in a /Futant/Ciamificanae	
Ecosystem service	Example		Importance/Extent/Significance	
Wetland non-food products	Reeds and	Tibre	Low	
Populating Conicco				
Regulating Services Ecosystem service	Example	e	Importance/Extent/Significance	
LCC3y3tc1113C1VICC	Storage and de		importance/Extendolgrimeance	
Maintenance of hydrological regimes	water as part of supply syster agriculture and	of water ns for	Medium	
Hazard reduction	Flood control, floo		Low	
	,			
Cultural Services				
Ecosystem service	Example	s	Importance/Extent/Significance	
Recreation and tourism	Nature observa nature-based		Medium	
Scientific and educational	Educational activities and opportunities		Medium	
Scientific and educational Scientific and educational Scientific and educational Scientific are search (scientific reference area or site)		Medium		
Supporting Services				
Ecosystem service	Example	S	Importance/Extent/Significance	
•	Supports a variet forms including	y of all life		
Biodiversity	animals a microorganizms, they contain, a ecosystems of w form a pa	nd the genes and the hich they	High	
Soil formation	Accumulation of matter		Medium	
Nutrient cycling	Storage, recycling,		Medium	
	Within the site:	50		
	Outoido deit	1000		
	L	1000		
Have studies or assessme ecosys	ents been made of stem services provi	the econor ded by this	mic valuation of Yes O No unki Ramsar Site?	nown O
4.5.2 - Social and cultur	ral values			
i) the site provides a mo	nowledge and met	nods of ma	anagement and \square	
ii) the site has excep		tions or re	cords of former	
civilizations that have influe iii) the ecological characteristics				
	th local communitie			

Description if applicable

The maintaining of high ecological value is connected to traditional activities such as reed and sedge harvesting nowadays almost over.

iv) relevant non-material values such as sacred sites are present and their existence is strongly linked with the maintenance of the ecological $\hfill\square$ character of the wetland

4.6 - Ecological processes

<no data available>

5 - How is the Site managed? (Conservation and management)

5.1 - Land tenure and responsibilities (Managers)

5.1.1 - Land tenure/ownership

Pub	OVVI	ш	μ

Category	Within the Ramsar Site	In the surrounding area
Local authority, municipality, (sub)district, etc.	2	

Private ownership

Category	Within the Ramsar Site	In the surrounding area
Other types of private/individual owner(s)	✓	✓

Provide further information on the land tenure / ownership regime (optional):

The owner of the whole wetland (60 ha) and of a neighbor wood (4 ha) is the municipality of Gazzo Veronese. Rivers Tartaro and Tione and their banks are owned by the state property. The remaining areas are private.

5.1.2 - Management authority

Please list the local office / offices of any	Gazzo Veronese Municipality
agency or organization responsible for	WWF Veronese Association
managing the site:	
rovide the name and title of the person or	
people with responsibility for the wetland:	Andrea Vecchini – Mayor of Gazzo Veronese
Destal address	Via Roma, 89 37060 Gazzo Veronese
Postal address:	37060 Gazzo Veronese

5.2 - Ecological character threats and responses (Management)

E-mail address: segreteria@comune.gazzo.vr.it

5.2.1 - Factors (actual or likely) adversely affecting the Site's ecological character

Water regulation

F

Factors adversely affecting site	Actual threat	Potential threat	Within the site	In the surrounding area
Canalisation and river regulation	Medium impact	unknown impact	A	✓

Agriculture and aquaculture

Factors adversely affecting site	Actual threat	Potential threat	Within the site	In the surrounding area
Annual and perennial non- timber crops	High impact	High impact	✓	✓

Biological resource use

Factors adversely affecting site	Actual threat	Potential threat	Within the site	In the surrounding area
Hunting and collecting terrestrial animals	Low impact			✓

Human intrusions and disturbance

Factors adversely affecting site	Actual threat	Potential threat	Within the site	In the surrounding area
Recreational and tourism activities	Low impact	Medium impact	✓	

Natural system modifications

Factors adversely affecting site	Actual threat	Potential threat	Within the site	In the surrounding area
Fire and fire suppression	High impact	High impact	✓	
Dams and water management/use	Low impact	High impact	2	✓
Vegetation clearance/ land conversion	Medium impact	High impact		

Invasive and other problematic species and genes

Factors adversely affecting site	Actual threat	Potential threat	Within the site	In the surrounding area
Invasive non-native/ alien species	Medium impact	High impact	✓	/

Pollution

Factors adversely affecting site	Actual threat	Potential threat	Within the site	In the surrounding area
Agricultural and forestry effluents	High impact	High impact	✓	/

5.2.2 - Legal conservation status

Regional (international) legal designations

regional (international) legal designations			
Designation type	Name of area	Online information url	Overlap with Ramsar Site
EU Natura 2000	IT3210013 Palude del Busatello	http://natura2000.eea.europa.eu/ Natura2000/SDF.aspx?site=IT32100 13	whole

National legal designations

Designation type	Name of area	Online information url	Overlap with Ramsar Site
National decree for designating Ramsar site (DM30.09.2008)	Busatello Marsh	http://www.minambiente.it/sites/ default/files/archivio/normativa /ramsar/ven_dm_30_09_2008_Palude Busatello.pdf	whole
Protected area of local interest (Area Protetta di interesse locale)	Oasi Palude del Busatello (D.C.C. 11.05.1995 n. 38)	http://www.agraria.org/parchi/ve neto/paludedibusatello.htm	partly

Non-statutory designations

Designation type	Name of area	Online information url	Overlap with Ramsar Site
Important Bird Area	Ostiglia swamps IT208	http://datazone.birdlife.org/sit e/factsheet/ostiglia-swamps-iba- italy/details	whole

5.2.3 - IUCN protected areas categories (2008)

la Strict Nature Reserve L
lb Wilderness Area: protected area managed mainly for wilderness protection
Il National Park: protected area managed mainly for ecosystem protection and recreation
III Natural Monument: protected area managed mainly for conservation of specific natural features
IV Habitat/Species Management Area: protected area managed mainly for conservation through management intervention
V Protected Landscape/Seascape: protected area managed mainly for landscape/seascape conservation and recreation
M Managed Resource Protected Area: protected area managed mainly for the sustainable use of natural ecosystems

5.2.4 - Key conservation measures

Legal protection

20ga: p. 010010.1				
Measures	Status			
Legal protection	Implemented			

Habitat

Measures	Status
Catchment management initiatives/controls	Partially implemented
Hydrology management/restoration	Partially implemented

Human Activities

RIS for Site no. 2315, Busatello marsh, Italy

Measures	Status
Management of water abstraction/takes	Implemented
Fisheries management/regulation	Implemented
Harvest controls/poaching enforcement	Implemented
Regulation/management of wastes	Implemented
Communication, education, and participation and awareness activities	Implemented
Research	Implemented

5.2.5 - Management planning

Is there a site-specific management plan for the site? In preparation

Has a management effectiveness assessment been undertaken for the site? Yes O No •

If the site is a formal transboundary site as indicated in section Data and location > Site location, are there shared management planning Yes O No opprocesses with another Contracting Party?

Please indicate if a Ramsar centre, other educational or visitor facility, or an educational or visitor programme is associated with the site:

There is a visitors' center which is now being developed and improved.

Some cooperative organizations work in the area where they offer guided tours and educational activities.

5.2.6 - Planning for restoration

Is there a site-specific restoration plan? No, the site has already been restored

5.2.7 - Monitoring implemented or proposed

Monitoring	Status
Water regime monitoring	Proposed
Animal species (please specify)	Proposed
Birds	Implemented

6 - Additional material

6.1 - Additional reports and documents

6.1.1 - Bibliographical references

Le attività di bonifica nella media e bassa pianura v.ese tra Adige e Tartaro - Consorzio di Bonifica Valli Grandi V.esi - Legnago 1969 Le zone umide della pianura veronese - Museo Civico St. Naturale di VR – Verona 1983

Studi sulla Palude di Busatello (Veneto e Lombardia)- Museo Civico St. Naturale di VR – Verona 1989

The Management Plan for the "Paludi di Ostiglia" Nature Reserve - Lombardy Official Bulletin - Milano 1993

La Palude del Busatello un ambiente da salvare – Provincia di Verona e LIPU – S.Giovanni Lupatoto 1995

Studi per la caratterizzazione degli habitat del Sito di Importanza Comunitaria Paludi di Ostiglia – PDF document 2003.

Progetto LIFE-Natura: Paludi di Ostiglia interventi di salvaguardia dell'avifauna prioritaria. Rapporto divulgativo - PDF document 2006

6.1.2 - Additional reports and documents

i. taxonomic lists of plant and animal species occurring in the site (see section 4.3)

<no file available>

ii. a detailed Ecological Character Description (ECD) (in a national format)

<no file available>

iii. a description of the site in a national or regional wetland inventory

<no file available>

iv. relevant Article 3.2 reports

<no file available>

v. site management plan

<no file available>

vi. other published literature

<no file available>

<no data available>

6.1.3 - Photograph(s) of the Site

Please provide at least one photograph of the site:

Palude del Busatello (Emesto Cavallini, 09-05-2012)

Palude del Busatello (Emesto Cavallini, 07-04-2016)

Palude del Busatello (Emesto Cavallini, 10-10-2007)

6.1.4 - Designation letter and related data

Designation letter

<1 file(s) uploaded>

Date of Designation 2017-10-03