Ukraine

Big Chapelsk Depression

Designation date: 17 November 2003
Site number: 1397
Coordinates: 46°28'57"N 33°50'55"E
Area: 2 359,00 ha

https://rsis.ramsar.org/ris/1397
Created by RSIS V.1.6 on - 2 August 2021
Color codes

Fields back-shaded in light blue relate to data and information required only for RIS updates.

Note that some fields concerning aspects of Part 3, the Ecological Character Description of the RIS (tinted in purple), are not expected to be completed as part of a standard RIS, but are included for completeness so as to provide the requested consistency between the RIS and the format of a ‘full’ Ecological Character Description, as adopted in Resolution X.15 (2008). If a Contracting Party does have information available that is relevant to these fields (for example from a national format Ecological Character Description) it may, if it wishes to, include information in these additional fields.

1 - Summary

Summary

Big Chapelsk Depression is a depression in relief, having a specific geomorphological structure of the Left-bank region of the Lower Dniper. It is an inland drainless wetland with permanent stagnant dystrophic water bodies and temporary overflows, lying at the crossroads of bird migratory routes in the northern Black Sea region. The Site represents one of three fragments of the protected steppe area, which are included in a cluster structure of the Biosphere Reserve ‘Askania-Nova’. The hydroregime is characterized by a periodical high water flooding and heavy rains-induced floods, covering an area from 4 to 1,300 ha and, for several years, provoking the development of subaqual ecosystems with typical flora and fauna.

Phytocoenoses have 4 vegetation types and 16 formation groups, include over 400 species in total. During floods, the meadow and meadow-bogg components dominate such as Butomus umbellatus, Schoenoplectus lacustris, Beckmannia euciformis, etc. During autumn and spring migrations, the Site supports dozens of thousands, and in some years - hundreds of thousands birds, in particular Anser albifrons (20,000-100,000 ind.), Grus grus (10,000-44,000 ind.), Branta ruficollis (400-12,500 ind.), Tadorna ferruginea (550-9,000 ind.). There are also infrequent records of Cygnus columbianus, Anser erythropus, Numenius arquata, etc. Ponds, located in the site, are filled with underground artesian water, do not freeze in winter, and thus support wintering of up to 40,000 of Anser albifrons, up to 16,000 ind. of Anas platyrhynchos, up to 3,500 of Tadorna ferruginea, etc. The Site is divided into enclosed areas with grazing of reintroduced indigenous species or ecological alternates of extinct steppe animals of Europe (Saiga tatarica, Equus hemionus kulan, E. przewalskii, Bison bison, Cervus elaphus, as well as C. nippon hortulorum, C. (Dama) dama, Ovis ammon musimon). In summer period, small groups of zoo animals are grazed (Equus burchelli, Taurotragus (Tragelaphus) oryx, Boselaphus tragocamelus, Connochaetes taurinus, Syncerus caffer, etc.). The Site is an important research area and located in the core zone of the Biosphere Reserve ‘Askania-Nova’.
2 - Data & location

2.1 - Formal data

2.1.1 - Name and address of the compiler of this RIS

<table>
<thead>
<tr>
<th>Responsible compiler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institution/agency</td>
</tr>
<tr>
<td>Postal address</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>National Ramsar Administrative Authority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institution/agency</td>
</tr>
<tr>
<td>Postal address</td>
</tr>
</tbody>
</table>

2.1.2 - Period of collection of data and information used to compile the RIS

| From year | 2012 |
| To year | 2018 |

2.1.3 - Name of the Ramsar Site

| Official name (in English, French or Spanish) | Big Chapelsk Depression |

2.1.4 - Changes to the boundaries and area of the Site since its designation or earlier update

- **A. Changes to Site boundary** Yes ☐ No ☑
- **B. Changes to Site area** No change to area

2.1.5 - Changes to the ecological character of the Site

- **b i. Has the ecological character of the Ramsar Site (including applicable Criteria) changed since the previous RIS?** Uncertain

For secretariat only: This update is an extension ☐

Optional text box to provide further information

There are changes in the basic meteorological parameters, showing the specificity of the climate situation from a minimum of 297.3 mm (about 74% of the norm) of the typical seasonal distribution of precipitation and to high aridity in some periods of the year (April, June, July, September and November). At the same time, fertility and numbers of hoofed animals increase in the site, providing a negative impact on the state of the area. In addition, social vole, gray crane, and seasonal ornithological pressure significantly affect the disturbance of soil and grass cover in general. The last two are due to changes in behavior of birds, because of their permanent stay in the wetland to feed on adjacent agricultural areas.

2.2 - Site location

2.2.1 - Defining the Site boundaries

b) Digital map/image

<2 file(s) uploaded>

| Former maps | 0 |

Boundaries description

The Site represents a natural relief depression, 4 km wide, 6 km long, formed as a result of numerous transgressions of ancient seas and transformations of loess. The Site is covered with natural steppe vegetation and surrounded by arable land. The Site is included in the Biosphere Reserve ‘Askania-Nova’. Thus, the boundaries of the Site run along the border with the fields to the east, west, and north, on the south side of the Site is limited by the boundaries of the core zone of the biosphere reserve. The Site lies in the north-eastern part of Chaplynka District of Kherson Region, Ukraine. The Site is located near Askania-Nova Village (3,500 people), lies 50 km to the south-east from the town of Nova Kakhovka (67,000) and circa 100 km to the east from the regional administrative centre – Kherson City (almost 400,000 people). Approximately 24 km to the south-western part of the Syvash wetlands begin.
a) In which large administrative region does the site lie? Chaplynka District of Kherson Oblast

b) What is the nearest town or population centre? Askania-Nova Village

2.2.3 - For wetlands on national boundaries only

a) Does the wetland extend onto the territory of one or more other countries? Yes

b) Is the site adjacent to another designated Ramsar Site on the territory of another Contracting Party? Yes

2.2.4 - Area of the Site

Official area, in hectares (ha): 2359

Area, in hectares (ha) as calculated from GIS boundaries: 2423.764

2.2.5 - Biogeography

<table>
<thead>
<tr>
<th>Biogeographic regions</th>
<th>Biogeographic region</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU biogeographic regionalization</td>
<td>The Steppe Biogeographical Region</td>
</tr>
</tbody>
</table>

Other biogeographic regionalisation scheme

Prisivasko-Priazovskaya lowland area of the Southeast (dry-steppe) subzone [Marynych and all., 2003; Baydikov, 2017].
3 - Why is the Site important?

3.1 - Ramsar Criteria and their justification

- **Criterion 1**: Representative, rare or unique natural or near-natural wetland types
 - **Hydrological services provided**: The wetland collects and stores water in a relatively arid steppe region. The water area of the Site varies from 4 to 1300 ha with periodicity of 12 years, depending on precipitation (snow and rain).
 - **Other reasons**: The Big Chapelsk Depression is one of the unique wetlands in the steppe zone of the Azov-Black Sea region and very important for biodiversity conservation. This area is a year-round protected for the conservation of rare bird species during nesting, migrating and wintering. Most of them do not breed in similar ecosystems in the region, which is caused by the growth of the hunting pressure and agricultural influence.

- **Criterion 2**: Rare species and threatened ecological communities

- **Criterion 3**: Biological diversity
 - **Justification**: The total flora diversity includes approximately 400 species. The wetland supports populations of plant species typical for the biogeographical region and is crucially important for the conservation of biological diversity. After floods on dry areas there are formed temporary coenoses of meadow-boggy grasses, and also coenoses with the dominance of meadow vegetation. Plant communities of Big Chapelsk Depression comprise 4 types of vegetation and 16 formations which encompass over 30 autochthonous associations. Heterogeneity of the bottom microrelief of the Site and changes in its water content determine a concentric localization and mosaic of its vegetation.

- **Criterion 4**: Support during critical life cycle stage or in adverse conditions

- **Criterion 5**: >20,000 waterbirds
 - **Overall waterbird numbers**: 150000
 - **Start year**: 2012
 - **Source of data**: The scientists' own observations of the reserve are reflected in the reporting documents and Chronicles of the nature of the reserve.

- **Criterion 6**: >1% waterbird population

3.2 - Plant species whose presence relates to the international importance of the site

Why is the Site important?, S3 - Page 1
Flora of the Big Chapelsk Depression is about 400 species.

3.3 - Animal species whose presence relates to the international importance of the site

<table>
<thead>
<tr>
<th>Phylum</th>
<th>Scientific name</th>
<th>Species qualifies under criterion</th>
<th>Species contributes under criterion</th>
<th>Pop.</th>
<th>(%) occurrence</th>
<th>IUCN</th>
<th>CITES</th>
<th>CMS</th>
<th>Other Status</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plantae</td>
<td>Allium regelianum</td>
<td>☐</td>
<td>☑</td>
<td>2</td>
<td>4</td>
<td>☐</td>
<td>☐</td>
<td></td>
<td>Red Data Book of Ukraine – LC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Damesonium atisima</td>
<td>☑</td>
<td>☑</td>
<td>2</td>
<td>4</td>
<td>☐</td>
<td>☐</td>
<td></td>
<td>Red Data Book of Ukraine - EN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elatine hungarica</td>
<td>☑</td>
<td>☑</td>
<td>2</td>
<td>4</td>
<td>☐</td>
<td>☐</td>
<td></td>
<td>Red Data Book of Ukraine - VU</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fritillaria meleagroides</td>
<td>☑</td>
<td>☑</td>
<td>2</td>
<td>4</td>
<td>☐</td>
<td>☐</td>
<td></td>
<td>Red Data Book of Ukraine - VU</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Juncus sphaerocephalus</td>
<td>☑</td>
<td>☑</td>
<td>2</td>
<td>4</td>
<td>☐</td>
<td>☐</td>
<td></td>
<td>Red Data Book of Ukraine - VU</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lythrum thymifolia</td>
<td>☑</td>
<td>☑</td>
<td>2</td>
<td>4</td>
<td>☐</td>
<td>☐</td>
<td></td>
<td>Red Data Book of Ukraine - VU</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phlomoides tuberosa</td>
<td>☑</td>
<td>☑</td>
<td>2</td>
<td>4</td>
<td>☐</td>
<td>☐</td>
<td></td>
<td>Red Data Book of Ukraine - NE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stipa capillata</td>
<td>☑</td>
<td>☑</td>
<td>2</td>
<td>4</td>
<td>☐</td>
<td>☐</td>
<td></td>
<td>Red Data Book of Ukraine - NE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stipa lessingiana</td>
<td>☑</td>
<td>☑</td>
<td>2</td>
<td>4</td>
<td>☐</td>
<td>☐</td>
<td></td>
<td>Red Data Book of Ukraine - NE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stipa rubens</td>
<td>☑</td>
<td>☑</td>
<td>2</td>
<td>4</td>
<td>☐</td>
<td>☐</td>
<td></td>
<td>Red Data Book of Ukraine - NE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tulipa gesneriana</td>
<td>☑</td>
<td>☑</td>
<td>2</td>
<td>4</td>
<td>☐</td>
<td>☐</td>
<td></td>
<td>Red Data Book of Ukraine - VU</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tulipa sylvestris australis</td>
<td>☑</td>
<td>☑</td>
<td>2</td>
<td>4</td>
<td>☐</td>
<td>☐</td>
<td></td>
<td>Red Data Book of Ukraine - EN</td>
<td></td>
</tr>
<tr>
<td>Fungi</td>
<td>Agaricus bresadlanus</td>
<td>☑</td>
<td>☑</td>
<td>2</td>
<td>4</td>
<td>☐</td>
<td>☐</td>
<td></td>
<td>Red Data Book of Ukraine - EN</td>
<td></td>
</tr>
</tbody>
</table>

Others

<table>
<thead>
<tr>
<th>Phylum</th>
<th>Scientific name</th>
<th>Species qualifies under criterion</th>
<th>Species contributes under criterion</th>
<th>Pop.</th>
<th>Period of pop. Est.</th>
<th>% occurrence</th>
<th>IUCN</th>
<th>CITES</th>
<th>CMS</th>
<th>Other Status</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHORDATA / MAMMALIA</td>
<td>Allactaga major</td>
<td>☐ ☐ ☐ ☐ ☐ ☐ ☐</td>
<td>☑ ☑ ☑ ☑</td>
<td>2</td>
<td>4 6 9 3 5 7 8</td>
<td>LC</td>
<td>☐</td>
<td>☐</td>
<td>Red Data Book of Ukraine – LC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHORDATA / REPTILIA</td>
<td>Coronella austriaca</td>
<td>☑ ☑ ☑ ☑ ☐ ☐ ☐</td>
<td>☑ ☑ ☑ ☑</td>
<td>2</td>
<td>4 6 9 3 5 7 8</td>
<td>LC</td>
<td>☐</td>
<td>☐</td>
<td>Red Data Book of Ukraine – VU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHORDATA / REPTILIA</td>
<td>Vipera renardii</td>
<td>☑ ☑ ☑ ☑ ☐ ☐ ☐</td>
<td>☑ ☑ ☑ ☑</td>
<td>2</td>
<td>4 6 9 3 5 7 8</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>Red Data Book of Ukraine – VU</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Why is the Site important?, S3 - Page 2
<table>
<thead>
<tr>
<th>Phylum</th>
<th>Scientific name</th>
<th>Species qualifies under criterion</th>
<th>Species contributes under criterion</th>
<th>Pop. Size</th>
<th>Period of pop. Est.</th>
<th>% occurrence 1)</th>
<th>IUCN Red List</th>
<th>CITES Appendix I</th>
<th>CMS Appendix I</th>
<th>Other Status</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHORDATA</td>
<td>Anser albifrons</td>
<td>☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️</td>
<td>☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️</td>
<td>29100</td>
<td>2012-2018</td>
<td>14.55</td>
<td>LC</td>
<td></td>
<td></td>
<td>Overlapping populations: Western Siberia/Black Sea & Turkey and Western Siberia/Central Europe</td>
<td></td>
</tr>
<tr>
<td>CHORDATA</td>
<td>Anser erythropus</td>
<td>☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️</td>
<td>☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️</td>
<td>70</td>
<td>2012-2018</td>
<td></td>
<td>VU</td>
<td>☑️</td>
<td></td>
<td>Red Data Book of Ukraine – VU</td>
<td>The Site supports the species during migration.</td>
</tr>
<tr>
<td>CHORDATA</td>
<td>Anthropoides virgo</td>
<td>☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️</td>
<td>☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️</td>
<td>35</td>
<td>2012-2018</td>
<td></td>
<td>LC</td>
<td></td>
<td></td>
<td>Red Data Book of Ukraine – EN</td>
<td>The Site supports the species during migration.</td>
</tr>
<tr>
<td>CHORDATA</td>
<td>Aquila heliaca</td>
<td>☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️</td>
<td>☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️</td>
<td>2</td>
<td>2012-2018</td>
<td></td>
<td>VU</td>
<td>☑️</td>
<td>☑️</td>
<td>Red Data Book of Ukraine – LC</td>
<td></td>
</tr>
<tr>
<td>CHORDATA</td>
<td>Branta ruficollis</td>
<td>☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️</td>
<td>☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️</td>
<td>2140</td>
<td>2012-2018</td>
<td>4.28</td>
<td>EN</td>
<td>☑️</td>
<td>☑️</td>
<td>Red Data Book of Ukraine – VU</td>
<td>The Site supports the species during migration.</td>
</tr>
<tr>
<td>CHORDATA</td>
<td>Bucephala clangula</td>
<td>☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️</td>
<td>☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️</td>
<td>35</td>
<td>2012-2018</td>
<td></td>
<td>LC</td>
<td></td>
<td></td>
<td>Red Data Book of Ukraine – LC</td>
<td>The Site supports the species during migration and wintering.</td>
</tr>
<tr>
<td>CHORDATA</td>
<td>Ciconia nigra</td>
<td>☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️</td>
<td>☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️</td>
<td>4</td>
<td>2012-2018</td>
<td></td>
<td>LC</td>
<td></td>
<td></td>
<td>Red Data Book of Ukraine – LC</td>
<td>The Site supports the species during migration.</td>
</tr>
<tr>
<td>CHORDATA</td>
<td>Coracias garrulus</td>
<td>☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️</td>
<td>☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️</td>
<td>6</td>
<td>2012-2018</td>
<td></td>
<td>LC</td>
<td>☑️</td>
<td>☑️</td>
<td>Red Data Book of Ukraine – EN</td>
<td>The Site supports the species during migration, and nesting.</td>
</tr>
<tr>
<td>CHORDATA</td>
<td>Falco cherrug</td>
<td>☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️</td>
<td>☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️</td>
<td>2</td>
<td>2012-2018</td>
<td></td>
<td>EN</td>
<td>☑️</td>
<td>☑️</td>
<td>Red Data Book of Ukraine – VU</td>
<td>The Site supports the species during migration, and nesting.</td>
</tr>
<tr>
<td>CHORDATA</td>
<td>Falco peregrinus</td>
<td>☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️</td>
<td>☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️</td>
<td>2</td>
<td>2012-2018</td>
<td></td>
<td>LC</td>
<td>☑️</td>
<td>☑️</td>
<td>Red Data Book of Ukraine – LC</td>
<td>The Site supports the species during migration and wintering.</td>
</tr>
<tr>
<td>CHORDATA</td>
<td>Fulica atra</td>
<td>☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️</td>
<td>☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️</td>
<td>50</td>
<td>2012-2018</td>
<td></td>
<td>LC</td>
<td>☑️</td>
<td>☑️</td>
<td>EU IUCN Red List - NT</td>
<td>support during migrations. 1-6 pairs nest within the site</td>
</tr>
<tr>
<td>CHORDATA</td>
<td>Glareola pratincola</td>
<td>☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️</td>
<td>☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️</td>
<td>25</td>
<td>2012-2018</td>
<td></td>
<td>LC</td>
<td></td>
<td></td>
<td>Red Data Book of Ukraine – LC</td>
<td>The Site supports the species during migration.</td>
</tr>
<tr>
<td>CHORDATA</td>
<td>Haliaeetus albicilla</td>
<td>☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️</td>
<td>☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️</td>
<td>8</td>
<td>2012-2018</td>
<td></td>
<td>LC</td>
<td>☑️</td>
<td>☑️</td>
<td>Red Data Book of Ukraine – LC</td>
<td>The Site supports the species during migration.</td>
</tr>
<tr>
<td>CHORDATA</td>
<td>Himantopus himantopus</td>
<td>☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️</td>
<td>☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️</td>
<td>52</td>
<td>2012-2018</td>
<td></td>
<td>LC</td>
<td></td>
<td></td>
<td>Red Data Book of Ukraine - VU</td>
<td>The Site supports the species during migration.</td>
</tr>
<tr>
<td>CHORDATA</td>
<td>Lymnocryptes lymnocryptes</td>
<td>☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️</td>
<td>☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️</td>
<td>170</td>
<td>2012-2018</td>
<td></td>
<td>NT</td>
<td></td>
<td></td>
<td>Annex I EU Birds Directive</td>
<td>support during migrations</td>
</tr>
<tr>
<td>CHORDATA</td>
<td>Mergus albellus</td>
<td>☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️</td>
<td>☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️</td>
<td>11</td>
<td>2012-2018</td>
<td></td>
<td></td>
<td>☑️</td>
<td>☑️</td>
<td>Red Data Book of Ukraine – EN</td>
<td>The Site supports the species during migration.</td>
</tr>
<tr>
<td>CHORDATA</td>
<td>Numenius arquata</td>
<td>☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️</td>
<td>☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️</td>
<td>10</td>
<td>2012-2018</td>
<td></td>
<td>NT</td>
<td>☑️</td>
<td>☑️</td>
<td>Red Data Book of Ukraine - CR</td>
<td>support during migrations</td>
</tr>
<tr>
<td>CHORDATA</td>
<td>Otis tarda</td>
<td>☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️</td>
<td>☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️ ☑️</td>
<td>100</td>
<td>2012-2018</td>
<td></td>
<td>VU</td>
<td>☑️</td>
<td>☑️</td>
<td>Red Data Book of Ukraine - CR</td>
<td>The Site supports the species during migration.</td>
</tr>
</tbody>
</table>
The wetland supports the greatest number of common species despite the remoteness of Syvash bays, located at a considerable distance from the Big Chapelsk Depression. The site holds concentrations of waders during spring and autumn migrations as well as cranes, Anseriformes and other waterbirds. The site regularly supports simultaneous gatherings of more than 20,000 ind. of Grus grus (average annual number over the period from 2012 to 2018 is 21,000 ind) and Anser albifrons (29,100 ind.). The maximum number of Grus grus (up to 44,000 ind; Havrylenko et al., 2012) was recorded in 2009, that of Anser albifrons – in 1996 (480,000 ind.) (Havrylenko, Mezinov, 2013). The total number of birds may reach more than 150,000 ind.

In total, the fauna of the site is represented by Pisces – 2 species; Aves – 131 species of 31 families, Orthopteroidea – 14 species; Amphibia – 3 species; Reptilia – 5 species; Mammalia – 29 species (of them Insectivora – 1 species; Leporiformes –1 species, Rodentia – 7 species; Carnivora – 2 species; Perissodactyla – 5 species; Artiodactyla – 13 species).

3.4 - Ecological communities whose presence relates to the international importance of the site

<table>
<thead>
<tr>
<th>Name of ecological community</th>
<th>Community qualifies under Criterion 2?</th>
<th>Description</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1.6 : Temporary lakes, ponds and pools</td>
<td>✓</td>
<td>Temporary freshwater and saline inland bodies of water and temporary drying areas of permanent water bodies</td>
<td>Representative. The community is included in Resolution 4 of the Bern Convention.</td>
</tr>
<tr>
<td>C1.67 : Turlough and lake-bottom meadows</td>
<td>✓</td>
<td>Communities at the bottom of periodically, usually annually, drying areas of stagnant water bodies</td>
<td>Representative. The community is included in Resolution 4 of the Bern Convention.</td>
</tr>
<tr>
<td>C3.2 : Water-fringing reedbeds and tall helophytes other than canes</td>
<td>✓</td>
<td>Communities of inland water bodies, including brackish ones, with the dominance of Bolboschoenus spp., Butomus umbellatus, Eleocharis palustris, Phragmites australis, Typha spp.</td>
<td>Rare, occurred only after flooding. The community is included in Resolution 4 of the Bern Convention.</td>
</tr>
<tr>
<td>C3.5: Periodically inundated shores with pioneer and ephemeral vegetation.</td>
<td>✓</td>
<td>1) Communities of low annual plants such as Elatine spp., Lindernia procumbens (C3.51), 2) communities of nitrophilous high annual plants - Bidens spp., Persicaria spp., Rorippa spp., Ranunculus sceleratus</td>
<td>Representative. The community is included in Resolution 4 of the Bern Convention.</td>
</tr>
<tr>
<td>Name of ecological community</td>
<td>Community qualifies under Criterion 2?</td>
<td>Description</td>
<td>Justification</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>C3.51: Euro-Siberian dwarf annual amphibious swards.</td>
<td>☑</td>
<td>Community of Cyperus fuscus and other low vegetation species</td>
<td>Representative. The community is included in Resolution 4 of the Bern Convention.</td>
</tr>
<tr>
<td>C3.5131 Toad-rush swards</td>
<td>☑</td>
<td>Community of Juncus bufonius</td>
<td>Representative. The community is included in Resolution 4 of the Bern Convention.</td>
</tr>
<tr>
<td>C3.6: Unvegetated or sparsely vegetated shores with soft or mobile sediments</td>
<td>☑</td>
<td>Muddy, sandy, gravel, pebble sediments near watercourses and lakes, including those in place of drying water bodies (freshwater and saline).</td>
<td>Representative. The community is included in Resolution 4 of the Bern Convention.</td>
</tr>
<tr>
<td>E1.2. Perennial calcareous grassland and basic steppes.</td>
<td>☑</td>
<td>Projective cover is 30-100%. Typical dominants: Galatella spp., Phlomis spp., Poa angustifolia, Stipa spp.</td>
<td>Representative. The community is included in Resolution 4 of the Bern Convention.</td>
</tr>
<tr>
<td>E1.6: Subnitrophilous annual grassland.</td>
<td>☑</td>
<td>Mediterranean coenoses formed under intensive grazing. Aegilops cylindrica is dominant.</td>
<td>Representative. The community is included in Resolution 4 of the Bern Convention.</td>
</tr>
<tr>
<td>E1.E: Trampled xeric grasslands with annuals.</td>
<td>☑</td>
<td>Typical species are Lepidium ruderale, Plantago major, Poa annua, Polygonum aviculare s. l.</td>
<td>Periodically, in dry season. The community is included in Resolution 4 of the Bern Convention</td>
</tr>
<tr>
<td>E3.4: Moist or wet eutrophic and mesotrophic grassland.</td>
<td>☑</td>
<td>Typical dominants: Alopecurus pratensis, Juncus spp.</td>
<td>Periodically, in dry season. The community is included in Resolution 4 of the Bern Convention</td>
</tr>
<tr>
<td>C3.42, C3.43: Species-poor beds of low-growing water-fringing or amphibious vegetation</td>
<td>☑</td>
<td>communities of the forest-steppe and steppe zones with the dominance of Elatine spp., Lythrum hyssopifolia</td>
<td>Representative. The community is included in Resolution 4 of the Bern Convention.</td>
</tr>
</tbody>
</table>

Optional text box to provide further information

A total of 4 vegetation types and 16 formations are found encompassing over 30 associations.
4 - What is the Site like? (Ecological character description)

4.1 - Ecological character

The wetland is formed in a steppe shallow depression. Slopes of the Chapelsk Depression have better moisture conditions in comparison with upland steppe. It is conditioned by the surface runoff, a general trend of redistribution of snow cover in the direction of negative forms of a relief, microclimatic parameters (cold air from the surrounding area runs in closed lowlands by the ravines), and others. The microrelief of the Big Chapelsk Depression has 6 concentric zones, different in hydrology and phytocenotic structure. The steppified, meadow, meadow-boggy and wetland phytocenoses are territorially displacing, but still are time-delimitted. The boundary between them is outlined by the lower reaches of the slopes and the edge of the bottom, which are flooded for a short time (15-30 days). The average duration between heavy rains is 12.2 years, with fluctuations from 4 to 24 years and changes in the water area from 4 to 1,300 hectares. The water level ranges from 15 cm to 1.3 m and depends on the precipitation amount. The maximum depth of full flooding does not exceed 1.3 m. The permanent centre of meadow-boggy vegetation is the central part of the bottom, periodically flooded up to 30-90 days, and in case of heavy rains - up to 200-240 days. The wetland is located in the Black Sea area of the Atlantic-continental steppe region, characterized by a large amount of light, warm and mild unstable winter. The average annual air temperature is +9.4 ºC. The amplitude of annual air temperatures exceeds 70 ºC (min -35 ºC, max + 48.5 ºC). The normal level of precipitation is 400 mm, ranging from 164 to 703 mm. The main part of precipitations occurs in the period from November to March. The ground freezes up to 30-40 cm, in occasional severe winters - up to 120 cm. Temporary reservoirs are formed annually. They initiate the development of ephemeral and hydrophilic formations and serve as places for the reproduction of amphibians. There are no outputs of underground water to the surface. Flood control is not required, as flooding, as a rule, does not go beyond the Site boundaries. The water, flowing by small artificial channels from artesian wells, is an additional source to maintain water level in a dry period for wild hoofed animals that are kepted within the Site.

4.2 - What wetland type(s) are in the site?

<table>
<thead>
<tr>
<th>Wetland types (code and name)</th>
<th>Local name</th>
<th>Ranking of extent (1: greatest - 4: least)</th>
<th>Area (ha) of wetland type</th>
<th>Justification of Criterion 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh water > Flowing water >> N: Seasonal/ intermittent/ irregular rivers/ streams/ creeks</td>
<td></td>
<td>4</td>
<td>2.3</td>
<td>Representative</td>
</tr>
<tr>
<td>Fresh water > Lakes and pools >> P: Seasonal/ intermittent freshwater lakes</td>
<td></td>
<td>1</td>
<td>1300</td>
<td>Representative</td>
</tr>
<tr>
<td>Fresh water > Marshes on inorganic soils >> Ts: Seasonal/ intermittent freshwater marshes/ pools on inorganic soils</td>
<td></td>
<td>3</td>
<td>150</td>
<td>Representative</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Human-made wetlands</th>
<th>Wetland types (code and name)</th>
<th>Local name</th>
<th>Ranking of extent (1: greatest - 4: least)</th>
<th>Area (ha) of wetland type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2: Ponds</td>
<td></td>
<td>1</td>
<td>15.4</td>
<td></td>
</tr>
<tr>
<td>3: Irrigated land</td>
<td></td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>9: Canals and drainage channels or ditches</td>
<td></td>
<td>1</td>
<td>3.7</td>
<td></td>
</tr>
</tbody>
</table>

4.3 - Biological components

4.3.1 - Plant species

Other noteworthy plant species
<table>
<thead>
<tr>
<th>Phylum</th>
<th>Scientific name</th>
<th>Position in range / endemism / other</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRACHEOPHYTA/MAGNOLIOPSIDA</td>
<td>Achillea euxina</td>
<td>endemic</td>
</tr>
<tr>
<td>TRACHEOPHYTA/MAGNOLIOPSIDA</td>
<td>Achillea inundata</td>
<td>endemic</td>
</tr>
<tr>
<td>TRACHEOPHYTA/MAGNOLIOPSIDA</td>
<td>Achillea micranthoides</td>
<td>endemic</td>
</tr>
<tr>
<td>TRACHEOPHYTA/LILIOPSIDA</td>
<td>Elymus repens repens</td>
<td>endemic</td>
</tr>
<tr>
<td>TRACHEOPHYTA/MAGNOLIOPSIDA</td>
<td>Galatella sedifolia biflora</td>
<td>endemic</td>
</tr>
<tr>
<td>TRACHEOPHYTA/MAGNOLIOPSIDA</td>
<td>Gypsophila muralis</td>
<td>endemic</td>
</tr>
<tr>
<td>TRACHEOPHYTA/MAGNOLIOPSIDA</td>
<td>Phalacrachena insuloides</td>
<td>endemic</td>
</tr>
<tr>
<td>TRACHEOPHYTA/MAGNOLIOPSIDA</td>
<td>Polygonum aschersonianum</td>
<td>endemic</td>
</tr>
<tr>
<td>TRACHEOPHYTA/MAGNOLIOPSIDA</td>
<td>Scleranthus verticillatus</td>
<td>endemic</td>
</tr>
</tbody>
</table>

Invasive alien plant species

<table>
<thead>
<tr>
<th>Phylum</th>
<th>Scientific name</th>
<th>Impacts</th>
<th>Changes at RIS update</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRACHEOPHYTA/MAGNOLIOPSIDA</td>
<td>Amaranthus albus</td>
<td>Actual (minor impacts)</td>
<td>No change</td>
</tr>
<tr>
<td>TRACHEOPHYTA/MAGNOLIOPSIDA</td>
<td>Amaranthus blitoides</td>
<td>Potential</td>
<td>No change</td>
</tr>
<tr>
<td>TRACHEOPHYTA/MAGNOLIOPSIDA</td>
<td>Amaranthus retroflexus</td>
<td>Actual (major impacts)</td>
<td>No change</td>
</tr>
<tr>
<td>TRACHEOPHYTA/MAGNOLIOPSIDA</td>
<td>Ambrosia artemisiifolia</td>
<td>Actual (major impacts)</td>
<td>No change</td>
</tr>
<tr>
<td>TRACHEOPHYTA/MAGNOLIOPSIDA</td>
<td>Atriplex tatarica</td>
<td>Actual (minor impacts)</td>
<td>No change</td>
</tr>
<tr>
<td>TRACHEOPHYTA/TULIPOPSIDA</td>
<td>Bromus tectorum</td>
<td>Actual (major impacts)</td>
<td>No change</td>
</tr>
<tr>
<td>TRACHEOPHYTA/MAGNOLIOPSIDA</td>
<td>Capsella bursa-pastoris</td>
<td>Actual (minor impacts)</td>
<td>No change</td>
</tr>
<tr>
<td>TRACHEOPHYTA/MAGNOLIOPSIDA</td>
<td>Centaurea diffusa</td>
<td>Actual (minor impacts)</td>
<td>No change</td>
</tr>
<tr>
<td>TRACHEOPHYTA/MAGNOLIOPSIDA</td>
<td>Descurainia sophia</td>
<td>Actual (minor impacts)</td>
<td>No change</td>
</tr>
<tr>
<td>TRACHEOPHYTA/MAGNOLIOPSIDA</td>
<td>Erigeron canadensis</td>
<td>Potential</td>
<td>No change</td>
</tr>
<tr>
<td>TRACHEOPHYTA/MAGNOLIOPSIDA</td>
<td>Iva xanthifolia</td>
<td>Potential</td>
<td>No change</td>
</tr>
<tr>
<td>TRACHEOPHYTA/MAGNOLIOPSIDA</td>
<td>Lactuca serriola</td>
<td>Actual (minor impacts)</td>
<td>No change</td>
</tr>
<tr>
<td>TRACHEOPHYTA/MAGNOLIOPSIDA</td>
<td>Lepidium draba</td>
<td>Actual (minor impacts)</td>
<td>No change</td>
</tr>
<tr>
<td>TRACHEOPHYTA/MAGNOLIOPSIDA</td>
<td>Lepidium perfoliatum</td>
<td>Actual (minor impacts)</td>
<td>No change</td>
</tr>
<tr>
<td>TRACHEOPHYTA/MAGNOLIOPSIDA</td>
<td>Lepidium ruderale</td>
<td>Actual (minor impacts)</td>
<td>No change</td>
</tr>
<tr>
<td>TRACHEOPHYTA/MAGNOLIOPSIDA</td>
<td>Onopordum acanthium</td>
<td>Potential</td>
<td>No change</td>
</tr>
<tr>
<td>TRACHEOPHYTA/MAGNOLIOPSIDA</td>
<td>Sisymbrium altissimum</td>
<td>Actual (major impacts)</td>
<td>No change</td>
</tr>
<tr>
<td>TRACHEOPHYTA/MAGNOLIOPSIDA</td>
<td>Triplodon sempervirens inodorum</td>
<td>Actual (minor impacts)</td>
<td>No change</td>
</tr>
<tr>
<td>TRACHEOPHYTA/MAGNOLIOPSIDA</td>
<td>Xanthium albinum</td>
<td>Actual (major impacts)</td>
<td>No change</td>
</tr>
<tr>
<td>TRACHEOPHYTA/MAGNOLIOPSIDA</td>
<td>Xanthium pungens</td>
<td>Actual (major impacts)</td>
<td>No change</td>
</tr>
<tr>
<td>TRACHEOPHYTA/MAGNOLIOPSIDA</td>
<td>Xanthium spinosum</td>
<td>Actual (major impacts)</td>
<td>No change</td>
</tr>
</tbody>
</table>

4.3.2 - Animal species

Other noteworthy animal species...
4.4 - Physical components

4.4.1 - Climate

The site belongs to the continental region of temperate climate. Hot dry summers and mild unstable winters are typical for the depression area. An average air temperature is 9.5ºС (extremities ranges from -32ºС to +40.3ºС). Average annual precipitation is 400 mm with its minimum of 164 mm in 1943 and maximum of 703 mm in 1997.

4.4.2 - Geomorphic setting

- **Minimum elevation above sea level (in metres)**: 20
- **Maximum elevation above sea level (in metres)**: 27

Please name the river basin or basins. If the site lies in a sub-basin, please also name the larger river basin. For a coastal/marine site, please name the sea or ocean.

Big Chapelsk Depression is located outside river basins and marine water areas. It relates to inland drainless wetlands with permanent stagnant dystrophic waterbodies and temporary overflows.

4.4.3 - Soil

- **Mineral**: Yes

Are soil types subject to change as a result of changing hydrological conditions (e.g., increased salinity or acidification)? Yes No

<table>
<thead>
<tr>
<th>Phylum</th>
<th>Scientific name</th>
<th>Pop. size</th>
<th>Period of pop. est.</th>
<th>% occurrence</th>
<th>Position in range</th>
<th>Endemism/orother</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHORDATAVES</td>
<td>Alauda arvensis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHORDATAMAMMALIA</td>
<td>Cervus elaphus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHORDATAVES</td>
<td>Emberiza calandra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHORDATAMAMMALIA</td>
<td>Equus hemionus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHORDATAMAMMALIA</td>
<td>Equus przewalski</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHORDATAREPTILIA</td>
<td>Lacerta agilis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHORDATAMAMMALIA</td>
<td>Lepus europaeus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHORDATAVES</td>
<td>Melanocorypha calandra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHORDATAMAMMALIA</td>
<td>Microtus socialis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHORDATAMAMMALIA</td>
<td>Pelophylax ridibundus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHORDATAMAMMALIA</td>
<td>Saiga tatarica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Please provide further information on the soil (optional)

Southern black soils and dark-chestnut soils (gleys meadow soils in depressions) are typical for the site.

4.4.4 - Water regime

<table>
<thead>
<tr>
<th>Water permanence</th>
<th>Presence?</th>
<th>Changes at RIS update</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usually permanent water present</td>
<td>![]</td>
<td>No change</td>
</tr>
<tr>
<td>Usually seasonal, ephemeral or intermittent water present</td>
<td>![]</td>
<td>decrease</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source of water that maintains character of the site</th>
<th>Presence?</th>
<th>Predominant water source</th>
<th>Changes at RIS update</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water inputs from surface water</td>
<td>![]</td>
<td>No change</td>
<td></td>
</tr>
<tr>
<td>Water inputs from precipitation</td>
<td>![]</td>
<td>No change</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water destination</th>
<th>Presence?</th>
<th>Changes at RIS update</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feeds groundwater</td>
<td>![]</td>
<td>No change</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stability of water regime</th>
<th>Presence?</th>
<th>Changes at RIS update</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water levels fluctuating (including tidal)</td>
<td>![]</td>
<td>decrease</td>
</tr>
</tbody>
</table>

Please add any comments on the water regime and its determinants (if relevant). Use this box to explain sites with complex hydrology:

The Site is supplied with water from atmospheric precipitation. The average duration of the period between strong floods is 12.2 years, ranging from 4 to 24 years; they change the water surface area from 4 to 1,300 hectares. The water level ranges from 15 cm to 1.3 m and depends on precipitation amount. An additional water source for the Site is the water coming from artesian wells.

4.4.5 - Sediment regime

Sediment regime unknown

4.4.6 - Water pH

Circumneutral (pH: 5.5-7.4)

(Update) Changes at RIS update: No change

Please provide further information on pH (optional):

The water acidity at the bottom in the Site is less than 6 units. This is due to the influence of soil pH (pH = 5.83-5.65) and a low oxidation-reduction potential. Abrupt changes in the chemical composition of water bodies occasionally occur in the spring season. Recrystallization processes take place during snow melting and with inflow of water, formed from melted snow, from the catchment basin. These processes lead to up to 5 times water enrichment by many ions, including free hydrogen ions, resulting in so-called "pH-shock", when the pH value rapidly falls to pH = 7.03 in the spring melted waters. Other reserve’s water bodies have subalkali or alkaline reaction, caused by increased salinity of natural waters and depth of the bottom formed by loess-like loam; pH of the artificial reservoirs of the site (which are situated at the southern slope of the wetland and from where the water through small artificial channels flows to the bottom) varies between 7.63 and 7.13.

4.4.7 - Water salinity

Fresh (<0.5 g/l)

(Update) Changes at RIS update: No change

Please provide further information on salinity (optional):

4.4.8 - Dissolved or suspended nutrients in water

Unknown

4.4.9 - Features of the surrounding area which may affect the Site

Please describe whether, and if so how, the landscape and ecological characteristics in the area surrounding the Ramsar Site differ from the site itself:

i) broadly similar
ii) significantly different

Surrounding area has greater urbanisation or development

Surrounding area has higher human population density
Surrounding area has more intensive agricultural use [✓]
Surrounding area has significantly different land cover or habitat types []

Please describe other ways in which the surrounding area is different:

In the surrounding area, the intensive agriculture is provided, which has led to the plowing of gullies, by which the water flows into the site. There is a reduction in the number of agricultural areas with cereals, the remains of which serve as forage for birds. The activity of hunting farms in the region during the hunting season increased, while the number of biotechnical measures provided by them was reduced.

4.5 - Ecosystem services

4.5.1 - Ecosystem services/benefits

Provisioning Services

<table>
<thead>
<tr>
<th>Ecosystem service</th>
<th>Examples</th>
<th>Importance/Extent/Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh water</td>
<td>Drinking water for humans and/or livestock</td>
<td>Medium</td>
</tr>
</tbody>
</table>

Regulating Services

<table>
<thead>
<tr>
<th>Ecosystem service</th>
<th>Examples</th>
<th>Importance/Extent/Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance of hydrological regimes</td>
<td>Groundwater recharge and discharge</td>
<td>Medium</td>
</tr>
</tbody>
</table>

Cultural Services

<table>
<thead>
<tr>
<th>Ecosystem service</th>
<th>Examples</th>
<th>Importance/Extent/Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recreation and tourism</td>
<td>Picnics, outings, touring</td>
<td>Medium</td>
</tr>
<tr>
<td>Recreation and tourism</td>
<td>Nature observation and nature-based tourism</td>
<td></td>
</tr>
<tr>
<td>Spiritual and inspirational</td>
<td>Cultural heritage (historical and archaeological)</td>
<td>Medium</td>
</tr>
<tr>
<td>Scientific and educational</td>
<td>Educational activities and opportunities</td>
<td>High</td>
</tr>
<tr>
<td>Scientific and educational</td>
<td>Important knowledge systems, importance for research (scientific reference area or site)</td>
<td>High</td>
</tr>
<tr>
<td>Scientific and educational</td>
<td>Major scientific study site</td>
<td>Medium</td>
</tr>
<tr>
<td>Scientific and educational</td>
<td>Long-term monitoring site</td>
<td>High</td>
</tr>
</tbody>
</table>

Supporting Services

<table>
<thead>
<tr>
<th>Ecosystem service</th>
<th>Examples</th>
<th>Importance/Extent/Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biodiversity</td>
<td>Supports a variety of all life forms including plants, animals and microorganisms, the genes they contain, and the ecosystems of which they form a part</td>
<td>High</td>
</tr>
</tbody>
</table>

Within the site: 100-83000
Outside the site: 9600-79000

Have studies or assessments been made of the economic valuation of ecosystem services provided by this Ramsar Site? [] Yes [] No [] Unknown

4.5.2 - Social and cultural values

i) the site provides a model of wetland wise use, demonstrating the application of traditional knowledge and methods of management and use that maintain the ecological character of the wetland

Description if applicable

Establishing of eco-tourism centers based on wetlands of international importance is least influential on the ecosystems and considerably economical use of natural resources to form environmental awareness of visitors. The application of technologies of organized ecotourism significantly reduces the disturbance of birds, giving them the ability to reproduce, eat, spend the night, and at the same time, leaving them available to viewing by many eco-tourists. Volumes of visit is determined and approved by the Scientific Council of the institution. It makes an inquiry about the limit for use of resources and the appropriate permissions. At the same time, conferences, workshops and meetings held in Askania Nova increase the opportunity to influence more people through participants. And also the media are involved, which are reports all over the country and abroad. The visit of birdwatchers that prefer observing from afar increased in recent years. Particular attention is paid to the scientific and educational activities with school and out-of-school institutions. Ecological actions, discussions, field trips are carried out according to the agreements with the reserve and cover about 7 thousand people annually.
iv) relevant non-material values such as sacred sites are present and their existence is strongly linked with the maintenance of the ecological character of the wetland

4.6 - Ecological processes

<no data available>
5 - How is the Site managed? (Conservation and management)

5.1 - Land tenure and responsibilities (Managers)

5.1.1 - Land tenure/ownership

<table>
<thead>
<tr>
<th>Category</th>
<th>Within the Ramsar Site</th>
<th>In the surrounding area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public ownership</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provincial/region/state government</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Private ownership		
Category	Within the Ramsar Site	In the surrounding area
Other types of private/individual owner(s)		✓

Provide further information on the land tenure / ownership regime (optional):

Lands of state ownership were transferred to the Administration of the Friedrich Falz-Fein Biosphere Reserve ‘Askania-Nova’ of the Ukrainian Academy of Agricultural Sciences (there is the Certificate on the right of permanent land use).

Other lands of national ownership, which were transferred to permanent use to the Biosphere Reserve ‘Askania-Nova’ (within the core area), the Institute of Livestock Breeding of the Steppe Region ‘Askania-Nova’, the Institute of Oil Crops of the Ukrainian Academy of Agricultural Sciences, as well as lands of private ownership (agricultural lands) within a buffer zone and zone of anthropogenic landscapes.

5.1.2 - Management authority

Please list the local office / offices of any agency or organization responsible for managing the site:

The Friedrich E. Falz-Fein Biosphere Reserve ‘Askania-Nova’

Provide the name and/or title of the person or people with responsibility for the wetland:

Viktor Havrylenko, director

Postal address: 15 Parkova St., Askania-Nova, Chaplynka district, Kherson region, 75230, Ukraine

E-mail address: askania.zap@gmail.com

5.2 - Ecological character threats and responses (Management)

5.2.1 - Factors (actual or likely) adversely affecting the Site’s ecological character

Human settlements (non agricultural)

<table>
<thead>
<tr>
<th>Factors adversely affecting site</th>
<th>Actual threat</th>
<th>Potential threat</th>
<th>Within the site</th>
<th>Changes</th>
<th>In the surrounding area</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tourism and recreation areas</td>
<td>Low impact</td>
<td>Low impact</td>
<td>✓</td>
<td>No change</td>
<td>✓</td>
<td>No change</td>
</tr>
<tr>
<td>Housing and urban areas</td>
<td>Low impact</td>
<td>Low impact</td>
<td>✓</td>
<td>No change</td>
<td>✓</td>
<td>No change</td>
</tr>
</tbody>
</table>

Water regulation

<table>
<thead>
<tr>
<th>Factors adversely affecting site</th>
<th>Actual threat</th>
<th>Potential threat</th>
<th>Within the site</th>
<th>Changes</th>
<th>In the surrounding area</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dredging</td>
<td>Low impact</td>
<td>Low impact</td>
<td>✓</td>
<td>No change</td>
<td>✓</td>
<td>No change</td>
</tr>
<tr>
<td>Salinisation</td>
<td>Low impact</td>
<td>Low impact</td>
<td>✓</td>
<td>No change</td>
<td>✓</td>
<td>No change</td>
</tr>
</tbody>
</table>

Agriculture and aquaculture

<table>
<thead>
<tr>
<th>Factors adversely affecting site</th>
<th>Actual threat</th>
<th>Potential threat</th>
<th>Within the site</th>
<th>Changes</th>
<th>In the surrounding area</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood and pulp plantations</td>
<td>Low impact</td>
<td>Low impact</td>
<td></td>
<td>No change</td>
<td>✓</td>
<td>No change</td>
</tr>
<tr>
<td>Annual and perennial non-timber crops</td>
<td>Low impact</td>
<td>Low impact</td>
<td></td>
<td>No change</td>
<td>✓</td>
<td>No change</td>
</tr>
<tr>
<td>Livestock farming and ranching</td>
<td>Low impact</td>
<td>Medium impact</td>
<td>✓</td>
<td>No change</td>
<td>✓</td>
<td>No change</td>
</tr>
</tbody>
</table>

Transportation and service corridors

<table>
<thead>
<tr>
<th>Factors adversely affecting site</th>
<th>Actual threat</th>
<th>Potential threat</th>
<th>Within the site</th>
<th>Changes</th>
<th>In the surrounding area</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roads and railroads</td>
<td>Medium impact</td>
<td>Medium impact</td>
<td></td>
<td>No change</td>
<td>✓</td>
<td>No change</td>
</tr>
<tr>
<td>Aircraft flight paths</td>
<td>Low impact</td>
<td>Low impact</td>
<td></td>
<td>No change</td>
<td>✓</td>
<td>No change</td>
</tr>
<tr>
<td>Utility and service lines (e.g., pipelines)</td>
<td>Low impact</td>
<td>Low impact</td>
<td></td>
<td>No change</td>
<td>✓</td>
<td>No change</td>
</tr>
</tbody>
</table>

Biological resource use

How is the Site managed?, S5 - Page 1
Factors adversely affecting site

<table>
<thead>
<tr>
<th>Actual threat</th>
<th>Potential threat</th>
<th>Within the site</th>
<th>Changes</th>
<th>In the surrounding area</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hunting and collecting terrestrial animals</td>
<td>Medium impact</td>
<td>Medium impact</td>
<td>☑️</td>
<td>No change</td>
<td>☑️</td>
</tr>
<tr>
<td>Gathering terrestrial plants</td>
<td>Low impact</td>
<td>Low impact</td>
<td>☑️</td>
<td>No change</td>
<td>☑️</td>
</tr>
<tr>
<td>Logging and wood harvesting</td>
<td>Low impact</td>
<td>Low impact</td>
<td>☑️</td>
<td>No change</td>
<td>☑️</td>
</tr>
<tr>
<td>Fishing and harvesting aquatic resources</td>
<td>Low impact</td>
<td>Low impact</td>
<td>☑️</td>
<td>No change</td>
<td>☑️</td>
</tr>
</tbody>
</table>

Natural system modifications

<table>
<thead>
<tr>
<th>Actual threat</th>
<th>Potential threat</th>
<th>Within the site</th>
<th>Changes</th>
<th>In the surrounding area</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire and fire suppression</td>
<td>Medium impact</td>
<td>Medium impact</td>
<td>☑️</td>
<td>No change</td>
<td>☑️</td>
</tr>
<tr>
<td>Dams and water management/use</td>
<td>High impact</td>
<td>High impact</td>
<td>☑️</td>
<td>No change</td>
<td>☑️</td>
</tr>
<tr>
<td>Vegetation clearance/land conversion</td>
<td>Low impact</td>
<td>Low impact</td>
<td>☑️</td>
<td>No change</td>
<td>☑️</td>
</tr>
</tbody>
</table>

Invasive and other problematic species and genes

<table>
<thead>
<tr>
<th>Actual threat</th>
<th>Potential threat</th>
<th>Within the site</th>
<th>Changes</th>
<th>In the surrounding area</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invasive non-native/alien species</td>
<td>Low impact</td>
<td>Low impact</td>
<td>☑️</td>
<td>No change</td>
<td>☑️</td>
</tr>
<tr>
<td>Problematic native species</td>
<td>Low impact</td>
<td>Low impact</td>
<td>☑️</td>
<td>No change</td>
<td>☑️</td>
</tr>
</tbody>
</table>

Pollution

<table>
<thead>
<tr>
<th>Actual threat</th>
<th>Potential threat</th>
<th>Within the site</th>
<th>Changes</th>
<th>In the surrounding area</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural and forestry effluents</td>
<td>Low impact</td>
<td>Low impact</td>
<td>☑️</td>
<td>No change</td>
<td>☑️</td>
</tr>
<tr>
<td>Garbage and solid waste</td>
<td>Low impact</td>
<td>Low impact</td>
<td>☑️</td>
<td>No change</td>
<td>☑️</td>
</tr>
<tr>
<td>Air-borne pollutants</td>
<td>Low impact</td>
<td>Low impact</td>
<td>☑️</td>
<td>No change</td>
<td>☑️</td>
</tr>
</tbody>
</table>

Climate change and severe weather

<table>
<thead>
<tr>
<th>Actual threat</th>
<th>Potential threat</th>
<th>Within the site</th>
<th>Changes</th>
<th>In the surrounding area</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature extremes</td>
<td>Low impact</td>
<td>Low impact</td>
<td>☑️</td>
<td>No change</td>
<td>☑️</td>
</tr>
<tr>
<td>Habitat shifting and alteration</td>
<td>Medium impact</td>
<td>High impact</td>
<td>☑️</td>
<td>No change</td>
<td>☑️</td>
</tr>
</tbody>
</table>

Please describe any other threats (optional):
The alteration of the habitats in relation to this Site implies the transformation of natural areas on arable land, which takes place in the region as a whole. This makes the Site an increasingly important stopover place for migratory birds.

5.2.2 - Legal conservation status

Global legal designations

<table>
<thead>
<tr>
<th>Designation type</th>
<th>Name of area</th>
<th>Online information url</th>
<th>Overlap with Ramsar Site</th>
</tr>
</thead>
</table>

Regional (international) legal designations

<table>
<thead>
<tr>
<th>Designation type</th>
<th>Name of area</th>
<th>Online information url</th>
<th>Overlap with Ramsar Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other international designation</td>
<td>Emerald network site UA00016 Askaniia-Nova Biosphere Reserve</td>
<td>https://rm.coe.int/updated-list-of-officially-adopted-emerald-sites-2020/1680e860d5</td>
<td>partly</td>
</tr>
</tbody>
</table>

National legal designations

<table>
<thead>
<tr>
<th>Designation type</th>
<th>Name of area</th>
<th>Online information url</th>
<th>Overlap with Ramsar Site</th>
</tr>
</thead>
</table>

Non-statutory designations

<table>
<thead>
<tr>
<th>Designation type</th>
<th>Name of area</th>
<th>Online information url</th>
<th>Overlap with Ramsar Site</th>
</tr>
</thead>
</table>
5.2.3 - IUCN protected areas categories (2008)

- Ia Strict Nature Reserve
- Ib Wilderness Area: protected area managed mainly for wilderness protection
- II National Park: protected area managed mainly for ecosystem protection and recreation
- III National Monument: protected area managed mainly for conservation of specific natural features
- IV Habitat/Species Management Area: protected area managed mainly for conservation through management intervention
- V Protected Landscape/Seascape: protected area managed mainly for landscape/seascape conservation and recreation
- VI Managed Resource Protected Area: protected area managed mainly for the sustainable use of natural ecosystems

5.2.4 - Key conservation measures

<table>
<thead>
<tr>
<th>Measures</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legal protection</td>
<td>Implemented</td>
</tr>
<tr>
<td>Habitat manipulation/enhancement</td>
<td>Implemented</td>
</tr>
<tr>
<td>Hydrology management/restoration</td>
<td>Partially implemented</td>
</tr>
<tr>
<td>Threatened/rare species management programmes</td>
<td>Implemented</td>
</tr>
<tr>
<td>Control of invasive alien plants</td>
<td>Implemented</td>
</tr>
<tr>
<td>Control of invasive alien animals</td>
<td>Implemented</td>
</tr>
<tr>
<td>Management of water abstraction/takes</td>
<td>Implemented</td>
</tr>
<tr>
<td>Communication, education, and participation and awareness activities</td>
<td>Implemented</td>
</tr>
<tr>
<td>Research</td>
<td>Implemented</td>
</tr>
<tr>
<td>Livestock management/exclusion (excluding fisheries)</td>
<td>Partially implemented</td>
</tr>
<tr>
<td>Regulation/management of recreational activities</td>
<td>Implemented</td>
</tr>
</tbody>
</table>

5.2.5 - Management planning

- Is there a site-specific management plan for the site? Yes ☑ No ☐
- Has a management effectiveness assessment been undertaken for the site? Yes ☑ No ☐
- If the site is a formal transboundary site as indicated in section Data and location > Site location, are there shared management planning processes with another Contracting Party? Yes ☑ No ☐

The administration of Askania-Nova Biosphere Reserve has an environmental propaganda sector that operates as a regional environmental and educational center.

5.2.6 - Planning for restoration

It is planned to develop and implement measures to reduce the impact of hunting outside the biosphere reserve, as well as mechanisms of compensation for the damage caused to landowners by flocks of migratory birds (during feeding on agricultural fields), including rare species-Grus grus and Tadorna ferruginea.
5.2.7 - Monitoring implemented or proposed

<table>
<thead>
<tr>
<th>Monitoring</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water regime monitoring</td>
<td>Implemented</td>
</tr>
<tr>
<td>Plant species</td>
<td>Implemented</td>
</tr>
<tr>
<td>Animal species (please specify)</td>
<td>Implemented</td>
</tr>
<tr>
<td>Plant community</td>
<td>Implemented</td>
</tr>
<tr>
<td>Animal community</td>
<td>Implemented</td>
</tr>
<tr>
<td>Birds</td>
<td>Implemented</td>
</tr>
</tbody>
</table>

Continuous monitoring is carried out on animals kept on semi-free grazing, as well as predators (foxes and wolves) and small mammals. Periodic monitoring of individual taxonomic groups of insects is also carried out.
6 - Additional material

6.1 - Additional reports and documents

6.1.1 - Bibliographical references

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Year</th>
<th>Pages</th>
<th>Publisher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modern landscape structure of the territory of the Kherson area as a basis for the introduction of the middle scale plan of landscape complexes of the region</td>
<td>Baydikov I.A.</td>
<td>2017</td>
<td>P.21-28.</td>
<td>Ukrainian Geographical Journal</td>
</tr>
</tbody>
</table>

6.1.2 - Additional reports and documents

1. Taxonomic lists of plant and animal species occurring in the site (see section 4.3)
 - <no file available>
2. A detailed Ecological Character Description (ECD) (in a national format)
 - <no file available>
3. A description of the site in a national or regional wetland inventory
 - <no file available>
4. Relevant Article 3.2 reports
 - <no file available>
5. Site management plan
 - <no file available>
6. Other published literature
 - <no file available>

6.1.3 - Photograph(s) of the Site

- Big Chapelsk Depression (Viktor Havrylenko, 05-03-2015)
- Big Chapelsk Depression (Mezinov Alexandr, 21-05-2015)
- Big Chapelsk Depression (Mezinov Alexandr, 14-03-2011)
- Big Chapelsk Depression (Viktor Havrylenko, 16-10-2015)
- Big Chapelsk Depression (Mezinov Alexandr, 14-02-2011)
- Big Chapelsk Depression (Mezinov Alexandr, 21-05-2010)
- Big Chapelsk Depression (Mezinov Alexandr, 22-09-2014)

6.1.4 - Designation letter and related data

- **Designation letter**
 - <1 file(s) uploaded>
 - **Date of Designation** 2003-11-17